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SUMMARY

The genetic code is degenerate. Each amino acid
is encoded by up to six synonymous codons; the
choice between these codons influences gene
expression. Here, we show that in coding sequences,
once a particular codon has been used, subsequent
occurrences of the same amino acid do not use
codons randomly, but favor codons that use the
same tRNA. The effect is pronounced in rapidly
induced genes, involves both frequent and rare
codons and diminishes only slowly as a function of
the distance between subsequent synonymous
codons. Furthermore, we found that in S. cerevisiae
codon correlation accelerates translation relative to
the translation of synonymous yet anticorrelated
sequences. The data suggest that tRNA diffusion
away from the ribosome is slower than translation,
and that some tRNA channeling takes place at the
ribosome. They also establish that the dynamics of
translation leave a significant signature at the level
of the genome.

INTRODUCTION

Translation of coding sequences into proteins by the ribosome

underlies the expression of genomes into cellular and organismal

functions. This process is mediated by tRNAs, which provide the

code that associates each sense nucleotide triplet (codon) with

a given amino acid. Each tRNA is charged on one end with a

specific amino acid by its respective aminoacyl tRNA synthe-

tase. At its other end, the tRNA exposes a 3-nucleotide

sequence (anticodon) that recognizes specific codons of

messenger RNAs at the acceptor site of the ribosome. In doing

so, the tRNAs ensure that coding sequences are reproducibly

translated into the same polypeptides. Thus, each of the 61

sense codons requires that at least one specific tRNA decodes

it always into the same amino acid. Because there are more

sense codons than amino acids, groups of codons are synony-

mous, i.e., they code for the same amino acid. Frequent amino
acids can be encoded by up to six alternative codons. Ideally,

these synonymous codons should be recognized and translated

each by their own tRNA, presenting the corresponding anti-

codon sequence.

However, numerous tRNAs compete with each other at the

acceptor site of ribosomes, until the correct tRNA is stably

selected. Two observations suggest that this competition antag-

onizes translation efficiency.

First, evolution favored the emergence of multivalent tRNAs

that can recognize more than one synonymous codon. This

allows reducing the number of tRNAs needed, and hence,

tRNA complexity. Consequently, most organisms translate the

61 sense codons with less than 61 tRNAs. Multivalent tRNAs

use non-Watson-Crick base pairing to recognize several synon-

ymous codons, called isoaccepting codons.

Second, the different tRNA species are differentially ex-

pressed: some tRNAs are more abundant than their synonymous

cognates. As a consequence, synonymous codons are not

equivalent and are not used randomly (Ikemura, 1985; Sharp

et al., 1993): Codons decoded by frequent tRNAs are more

frequent in coding sequences than their synonyms (Ikemura,

1985; Dong et al., 1996; Duret, 2000). This bias is strongest in

highly expressed genes, indicating that codon composition has

an impact on translation efficiency. This notion has been exper-

imentally verified: Replacement of rare codons with frequent

synonymous codons strongly improves the efficiency with which

a sequence is translated in a given organism (Gustafsson et al.,

2004).

Despite these mechanisms to simplify and optimize it, transla-

tion remains a fairly slow process in eukaryotes (2 amino acids

per sec. on average) compared to bacteria (15 amino acids per

sec.). Furthermore, depending on the physiological conditions

and the transcript, the rate of amino acid incorporation varies

substantially in eukaryotes, ranging from 1 to 10 amino acids

per second (Spirin, 1999). Here, we provide evidence that trans-

lation speed can be modulated through tRNA recycling at the

ribosome.
RESULTS

We investigated the distribution of pairs of synonymous codons

in coding sequences (analyzed in all reading frames) of the yeast
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Table 1. Codon Co-occurrence

(A) Co-occurrence Counts

tRNA Ser1 Ser2 Ser3 Ser4

Ser1 45392 20797 9564 25702

Ser2 21119 11766 5101 13534

Ser3 9581 5150 2607 6296

Ser4 25381 13980 6463 21029

tRNA Ser1 Ser2 Ser3 Ser4

Codon TCC TCT TCA TCG AGC AGT

Ser1 TCC 6443 10525 7831 3748 3814 5713

TCT 10412 18012 12966 5816 6575 9600

Ser2 TCA 7707 13412 11766 5101 5272 8262

Ser3 TCG 3647 5934 5150 2607 2573 3723

Ser4 AGC 3906 6200 5543 2724 3737 5030

AGT 5897 9378 8437 3739 4982 7280

(B) Standard Deviations from Expected

tRNA Ser1 Ser2 Ser3 Ser4

Ser1 16.62 �5.31 �3.35 �12.98

Ser2 �2.53 8.09 1.12 �4.79

Ser3 �2.77 1.88 6.34 �2.09

Ser4 �15.81 �1.86 �0.68 21.16

tRNA Ser1 Ser2 Ser3 Ser4

Codon TCC TCT TCA TCG AGC AGT

Ser1 TCC 6.55 6.16 �2.86 0.60 �6.23 �6.19

TCT 5.30 12.02 �4.36 �4.68 �5.35 �7.16

Ser2 TCA �3.82 �0.15 8.09 1.12 �5.78 �1.33

Ser3 TCG �0.71 �2.92 1.88 6.34 �0.85 �1.98

Ser4 AGC �5.14 �10.55 �2.93 1.53 13.44 9.34

AGT �3.90 �9.78 0.05 �2.15 8.91 10.33

(C) Percent Deviation from Expected

tRNA Ser1 Ser2 Ser3 Ser4

Ser1 7.35 �3.46 �3.30 �7.34

Ser2 �1.65 7.56 1.56 �3.91

Ser3 �2.74 2.63 13.15 �2.56

Ser4 �8.91 �1.51 �0.84 15.06

tRNA Ser1 Ser2 Ser3 Ser4

Codon TCC TCT TCA TCG AGC AGT

Ser1 TCC 8.39 6.05 �3.13 0.97 �9.52 �7.77

TCT 5.22 9.03 �3.65 �5.87 �6.30 �6.90

Ser2 TCA �4.19 �0.13 7.56 1.56 �7.57 �1.43

Ser3 TCG �1.17 �3.68 2.63 13.15 �1.66 �3.17

Ser4 AGC �7.82 �12.36 �3.81 2.95 24.38 13.92

AGT �4.89 �9.41 0.06 �3.42 13.32 12.68

(D)

Grouped by: Parsimony Rule Extended Wobble Individual tRNA Global

(No grouping) Standard deviations

Amino Acid Isoaccepting Nonisoaccepting Isoaccepting Nonisoaccepting Self Other

Alanine 6/2/0 0/2/6 6/2/0 0/2/6 2/0/0 0/0/2 21.73

Arginine 7/3/2 5/9/10 7/4/3 5/8/9 4/0/0 0/7/5 17.50

Glycine 4/0/2 6/0/4 6/0/2 4/0/4 3/0/0 2/0/4 18.18

Isoleucine 3/2/0 0/0/4 3/2/0 0/0/4 2/0/0 0/0/2 19.50
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Table 1. Continued

(D)

Grouped by: Parsimony Rule Extended Wobble Individual tRNA Global

(No grouping) Standard deviations

Leucine 7/3/0 2/12/12 7/4/1 2/11/11 4/0/0 0/6/6 20.26

Proline 4/2/2 1/3/4 4/2/2 1/3/4 2/0/0 0/0/2 9.12

Serine 10/0/0 0/14/12 10/2/0 0/12/12 4/0/0 0/7/5 30.81

Threonine 6/0/0 2/0/8 8/0/0 0/0/8 3/0/0 2/0/4 16.54

Valine 4/2/0 2/0/8 6/2/0 0/0/8 3/0/0 2/0/4 18.27

Total: 51/14/6 18/40/68 57/18/8 12/36/66 33/6/0 6/20/40

Codon reuse measured over all pairs comprised of one codon and the next one that codes for the same amino acid. See also Table S1. (A) Co-occur-

rence counts, (B) standard deviations, (C) percent deviation from expected tRNA (left) and codon (right) reuse for Serine, coded by 6 codons and trans-

lated by 4 tRNA molecules. Positive deviations from expected indicate selection for tRNA reuse (bold, above 3; underlined, between 1 and 3; standard

deviations, SD). (D) Codon pairs grouped into those with isoacceptors (sharing a tRNA) and those without, by parsimony or extended wobble rules, or

by individual tRNA (no isoacceptors other than self). Within each group, pairs were classified as favored (R+3 SD), neutral (between�3 and +3 SD), or

disfavored (%�3 SD); counts are tabulated as favored/neutral/disfavored for each amino acid.
genome (Saccharomyces cerevisiae). This genome is well

annotated, providing precise information about which

sequences are coding. For this genome, the analysis was con-

ducted for the nine amino acids (alanine, arginine, glycine,

isoleucine, proline, leucine, serine, threonine, and valine) that

have at least two isoaccepting codons. First, we computed

a correlation matrix for each amino acid: All instances of codons

for a given amino acid were extracted, and the identity of the next

synonymous codon in the same reading frame was determined.

Based on this, the frequency of each possible codon pair was es-

tablished and compared to the frequency expected under the

assumption of random distribution, given the observed codon

frequencies (product of individual frequencies). The results were

then expressed as number of standard deviations from the

expected (Z transform) or percent deviation from the expected,

respectively. Note that we are not looking at pairs of consecutive

codons but pairs of consecutive synonymous codons, which may

be separated by any number of codons for other amino acids.

These correlation matrices show that successive synony-

mous codons are not chosen independently from one another

(see correlation matrix for serine in Table 1; all other amino acids

in Table S1 and Supplemental Information, available online).

Indeed, in all matrices, identical codons followed each other

more frequently than expected and more than any other off-

diagonal element. For serine, the diagonal ranges between

+6.3 and +13.4 standard deviations (SD) away from expected

values (up to 24% more often than expected). More remarkably,

favored pairs were not limited to the diagonal, indicating that

bias was not simply directed toward reuse of the same codon.

Most favored pairs (positive deviations by more than 3 SD)

associated codons translated by the same tRNA using the

parsimony of the wobbling rule of Percudani (Percudani et al.,

1997). The Percudani rule states that tRNAs wobble with a

synonymous codon only if there is no better tRNA for that

codon. This is proposed to improve translation fidelity and to

be favored in eukaryotes. In contrast, the extended wobbling

rule of Crick (Crick, 1966) states that all tRNAs wobble and

read all compatible codons. This hypothesis is well documented

for bacteria.
In the example of serine, all four pairs of nonidentical codons

decoded by the same tRNA in the parsimony rule (codons TCC

and TCT, read by tRNA Ser1, and codons AGC and AGT, read

by tRNA Ser4) are correlated at least 5.3 and up to 9.3 SD

more frequently than expected (Table 1). No other pair of codons

is otherwise favored (above 3 SD), except the pairs of identical

codons. Conversely, pairs of codons read by nonisoaccepting

tRNAs are nearly all underrepresented. Taking all relevant

amino acids in consideration, positive deviations are much more

frequent for isoaccepting codon pairs than for nonisoaccepting

(Figure 1A). Thus, consecutive encodings of the same amino

acid favored the usage of codons translated by the same tRNA.

Interestingly, among the three additional pairs of serine

codons that are slightly overrepresented (between 1 and 3 SD),

we find the TCA, TCG and TCG, TCA pairs. These pairs involve

the two remaining codons, which are not predicted to be read

by the same tRNAs according to the parsimony rule (each of

these codons has its own tRNA), but would be in the extended

wobble rule. Thus, among the 13 pairs of serine codons (out of

36 possible) that are overrepresented, we find all 12 pairs that

associate isoaccepting codons according to the wobble theo-

ries. Out of the 24 pairs that associate codons that cannot be

read by the same tRNA, only one was slightly overrepresented,

and 17 were underrepresented by at least one and up to 10.5

standard deviations. Among the isoaccepting codon pairs, those

defined by the parsimony rule were the most strongly overrepre-

sented.

For each relevant amino acid (coded by more than two codons

and read by more than two tRNAs; i.e., alanine, arginine, glycine,

isoleucine, leucine, proline, serine, threonine, and valine), we

counted the number of isoaccepting and nonisoaccepting

codon pairs that were overrepresented by more than 3 SD, those

that were underrepresented by more than 3 SD, or those that

were neutral (between –3 and 3 SD from expected, Table 1D).

This analysis was made using either the parsimony or the

extended wobble rules to assign tRNAs and codons. For all

amino acids, the overrepresentation of isoaccepting pairs was

strong under the parsimony rule, and further increased in the

extended rule. Clearly, codon correlation was strongly linked to
Cell 141, 355–367, April 16, 2010 ª2010 Elsevier Inc. 357
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Figure 1. Controls for Mechanisms Other Than tRNA Recycling

(A) Observed z-scores (standard deviations from expected) for isoaccepting codons pairs (red) and nonisoaccepting codon pairs (blue), according to the

parsimony of wobbling rule.

(B) Control for codon bias in isoaccepting codons. The codons within each gene were shuffled while maintaining the amino acid sequence. The mean of the

distribution of the deviations from expected of the naturally occurring isoaccepting pairs is significantly (p-value 0.045) more positive (red) than that of the shuffled

isoaccepting pairs (green).

(C) Control for codon bias in nonisoaccepting codons. The naturally occurring nonisoaccepting pairs (blue) are significantly more negative than those for the

shuffled genes (green). The means of the two distributions are different with a p-value < 0.06.

(D) Control for tRNA abundance: Correlation between tRNA frequency and autocorrelation in highly expressed genes. Data based on the third of the S. cerevisiae

genome with the highest CAI values. Correlation coefficient = –0.77, p-value = 0.00001).

(E) Control for tRNA abundance: As above, but in the least expressed genes. Data obtained from the third of the genome with the lowest CAI. Correlation

coefficient = –0.5, p-value = 0.06.
the capacity of considered codons to be read by the same tRNA.

Thus, we conclude that subsequent synonymous codons are

correlated according to their reading tRNAs.

Several phenomena can result in codon correlation: (1)

different genes are enriched in different codons, perhaps due

to local variations in GC content, or (2) there is a selection pres-

sure for codon ordering in open reading frames. In the first case,

the correlation observed at the genomic level would be due to

the accumulation of given codons in specific genes and should
358 Cell 141, 355–367, April 16, 2010 ª2010 Elsevier Inc.
remain if codon distribution is shuffled in each gene individually.

In the second case, such codon shuffling would erase correla-

tion. In both cases, correlation should disappear when codon

distribution is shuffled throughout the entire genome. Thus, we

studied how autocorrelation changed with (Figure 1B and 1C,

green) and without (Figure 1B, red and 1C, blue) shuffling the

codons within each gene. For the shuffled genes, autocorrelation

decreased for isoacceptor pairs (Figure 1B) and increased for

nonisoaccepting pairs (Figure 1C). The hypothesis that the two
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Different amino acids are shown in different colors,

with one shade of color per tRNA. tRNA pairing is

quantified as follows: First, the number of changes

of isoacceptor tRNA is summed. This total number
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distribution of all possible numbers of changes,

computed (by convolution) from those for each

amino acid. The TPI is 1-2p, where p is the percen-

tile (i.e., the value of the cumulative density func-

tion) of the global distribution at the given number

of changes.
distributions have different means was confirmed at a p-value

of 0.05 by Monte Carlo simulations. Thus, autocorrelation was

not simply due to codon bias at the gene level, but to codon

ordering within genes. In contrast, no significant nucleotide

triplet ordering was found for noncoding DNA (data not shown).

If the correlation effect was simply due to accumulation of

frequent codons in genes with biased codon composition, this

effect should also be highest for frequent codons and not

observed for rare codons. However, this was not the case. For

example, the serine tRNA Ser3 (Table 1) is the least frequent

and yet among the most correlated tRNAs (reuse 13% more

frequent than expected). To study the effect of tRNA abundance

on correlation, tRNA autocorrelation was plotted for each tRNA

as a function of its usage frequency. Furthermore, instead of

carrying out this analysis on the full genome, we compared

tRNA autocorrelations in the third of the S. cerevisiae genes

with the highest Codon Adaptation Index, CAI (Figure 1D) and

in the third with the lowest CAI (Figure 1E). The CAI measures

the bias toward usage of frequent codons. The genes with

a high CAI are the most highly expressed. Remarkably, for the

high CAI genes, tRNA autocorrelation is negatively correlated

with tRNA usage (correlation coefficient of �0.77, p-value =

0.00001 by Monte Carlo simulations). In other words, in highly

expressed genes, reuse of isoaccepting codons is strongest

for rare tRNAs. For the third of the genome with the lowest

CAI, a negative correlation is also observed although it is much

weaker (correlation coefficient = –0.58, p value = 0.066).

Autocorrelation was overall weaker in these genes. Thus, for

infrequent tRNAs the pressure toward correlation is stronger,

particularly in highly expressed genes.

These observations establish that evolutionary pressure

selects for reusage of isoacceptor codons at successive inter-

vals. This effect is not restricted to frequent codons and frequent

tRNAs and is absent in noncoding DNA. Thus, these data
Cell 141, 355–3
suggest that reusage, i.e., recycling, of

the same tRNA at successive encodings

of the same amino acid may speed up

translation, or favor fidelity.

tRNA Pairing Index and Its
Correlation with Expression
Next, we measured isoacceptor codon

autocorrelation at the gene level, using
a tRNA pairing index (TPI). For an example of TPI, consider an

amino acid X that occurs seven times in a protein and is trans-

lated by tRNAs A and B. We extract the corresponding codons

from the gene sequence and represent them as a string of

seven symbols, e.g., AABABBB, depending on the tRNA that

decodes them. Highly autocorrelated cases are AAABBBB and

BBBBAAA. The most anticorrelated case is BABABAB. The

number of tRNA changes along the string quantifies autocorrela-

tion (e.g., three changes in AABABBB). This number can be

summed for all relevant amino acids (more than two codons

and two tRNAs), giving a total number of changes in a given

sequence. This observed number of changes is then compared

to the average number of changes in random codon sequences

coding for the same protein in which the random codons are

drawn from the global codon distribution of the genome. Efficient

recursions of these individual distributions for each amino acid

have been presented (Friberg et al., 2006). The distributions of

the individual amino acids are then convolved to a global back-

ground distribution. The TPI index is then defined as 1-2p, where

p is the percentile (i.e., the value of the cumulative density func-

tion) of the global distribution at the given number of tRNA

changes, as shown in Figure 2. By definition, the TPI ranges

from –1 for the maximal number of tRNA changes (perfectly anti-

correlated) to +1 for the minimal number of tRNA changes

(perfectly autocorrelated). As expected from the correlation

data, the distribution of the TPIs of all yeast genes was biased

toward positive values (average TPI was 0.124).

To investigate how the TPI behaved in genes that are under

variable pressure for rapid expression, TPI values were analyzed

in the genes upregulated at least ten times in response to: 1-cell

cycle progression (Cho et al., 1998; Spellman et al., 1998),

2-diauxic shift (DeRisi et al., 1997), 3-DNA damage (Gasch

et al., 2001), 4-changes in zinc levels (Lyons et al., 2000),

5-phosphate deprivation (Ogawa et al., 2000), 6-ER stress
67, April 16, 2010 ª2010 Elsevier Inc. 359



Table 2. tRNA Correlation in Individual Genes

(A)

Experiment # TPI P Value CAI P Value

Cell cycle 32 0.475 0.0020 0.219 0.084

Diauxic shift 30 0.428 0.0072 0.220 0.078

DNA damage 68 0.445 0.00008 0.233 0.0029

Zinc levels 33 0.461 0.0020 0.256 0.0034

Phosphate dep. 24 0.248 0.19 0.197 0.29

ER stress 72 0.267 0.37 0.181 0.42

Sporulation 160 �0.0311 0.0019 0.152 0.00002

Glucose to glycerol 207 0.152 0.28 0.166 0.0087

Mating pheromone treatment 275 0.0052 0.0020 0.148 <0.00001

Arsenic time all 53 0.405 0.0012 0.185 0.46

(B)

Experiment # TPI P Value CAI P Value

arsenic fast 19 0.579 0.0013 0.192 0.36

arsenic slow 17 0.211 0.30 0.168 0.34

Pheromone arrest fast 72 0.395 0.00027 0.258 0.000010

elutriation fast 73 0.524 <0.00001 0.232 0.0025

Cdc15 arrest fast 74 0.345 0.0026 0.236 0.0016

Pheromone arrest slow 74 �0.037 0.022 0.160 0.029

elutriation slow 75 0.0071 0.069 0.146 0.00022

Cdc15 arrest slow 75 0.0027 0.063 0.161 0.033

(A) Average TPIs (range: �1 to1) and codon adaptation indices (CAIs) for

groups of genes that have been shown to be upregulated at least tenfold

under the given conditions. Average CAI of the yeast database is 0 and

the average TPI is 0.124. Groups with an average TPI higher than twice

the genomic average are in bold in 3rd column. Groups with high and

highly significant TPI (p<0.01) are in bold in 4th column. (B) TPI of rapidly

and slowly responding genes upon arsenic poisoning or during cell cycle

progression.
(Travers et al., 2000), 7-sporulation (Chu et al., 1998), 8-change

from glucose to glycerol metabolism (Roberts and Hudson,

2006), 9-mating pheromone treatment (Roberts et al., 2000)

and 10-arsenic treatment (Haugen et al., 2004). Their average

TPI and CAI values were computed and compared to those of

100,000 random groups of the same size to assess their signifi-

cance (Table 2A). Seven out of these ten categories (bold in 3rd

column) showed an average TPI much higher than the genome

average, and in five of these cases this TPI was highly significant

(p < 0.01, bold in fourth column). Four of these five conditions

correspond to acute responses (DNA damage, arsenic intoxica-

tion, zinc deprivation and diauxic shift). The fifth one, cell cycle

progression, is the main fitness parameter for yeast. The genes

induced in sporulation showed a negative TPI average that

was highly significant. The genes induced by pheromone

showed a neutral TPI (0.0052). Thus, codon correlation was

highly increased in genes contributing to rapid growth or to acute

stress responses.

Strikingly, in four out of the five categories with high TPI, the

TPI values were clearly more significant than the corresponding

CAI values (DNA damage, cell cycle, arsenic response and
360 Cell 141, 355–367, April 16, 2010 ª2010 Elsevier Inc.
diauxic shift). These categories correspond to genes that are

very dynamically regulated, i.e., that are rapidly turned on upon

induction. Furthermore, the significance of the TPI correlated

well with the rapidity with which they need to be regulated. The

TPI was highest and most significant for genes induced by

DNA damage, slightly lower for cell cycle genes and lower for

genes involved in the diauxic shift. DNA damage must be

repaired rapidly within the time of one cell cycle, while the

timescale of the cell cycle is shorter than that of the diauxic shift.

Most likely, cells are under high pressure to very rapidly fight

drugs as potent as arsenic. The fact that in these genes the

TPI values were clearly more significant than the CAI values

suggests that codon order, and not just bias, was the primary

cause for nonrandom codon usage.

To test whether high TPI contributes to induction speed, we

investigated whether the genes whose transcription is induced

fastest and slowest in response to the same stimulus show

different TPIs (Table 2B). The gene categories found above to

show a high TPI and for which the kinetics of induction are

available (cell-cycle and arsenic response) were sorted further

into rapidly and slowly induced groups, and their average TPI

was compared. The genes most rapidly induced in response to

arsenic poisoning showed the highest and most significant

average TPI (0.579), compared to the genes that reacted more

slowly (0.211; Table 2B). Thus, the selection for high TPI was

strongest for the genes under highest pressure for rapid induc-

tion. The CAIs for the fast and slow groups were not significantly

different from the average, indicating that codon order rather

than bias correlated best with a rapid response to arsenic.

Time course data for cell cycle genes (Spellman et al., 1998)

were obtained from cells synchronized at two different cell cycle

stages: G1 (pheromone and centrifugal elutriation) and mitosis

(cdc15-2 mutant cells). For each experiment, the data was

sorted by induction speed (see Methods) and the fastest 10%

and the slowest 10% were compared. In all cases, the average

TPI for the fast groups was higher than genomic average, while

the TPI for the slowest groups was low. Thus, in rapidly induced

genes a strong pressure selects for codons decoded by the

same tRNA at consecutive encodings of the same amino acid.

Therefore, the reuse of isoaccepting codons may support rapid

translation.

Codon Correlation Enhances Translation Efficiency
in S. cerevisiae

On the basis of these observations, we tested whether codon

autocorrelation impacts translation speed. To this end, we de-

signed a technique to compare the relative rates of translation

of two sequences encoding the same peptide, in vivo. This

method does not provide absolute translation rates, which can

be modulated by many more parameters.

Our strategy relies on the fact that the distance between

objects moving behind each other on a linear path is directly

related to their velocity. For example, cars following each other

on a highway get closer to each other when they slow down

and are more dispersed when they speed up. Therefore, the local

density of cars along the highway is inversely proportional to the

local velocity of traffic, provided that the entry flux remains

constant. Because ribosomes start translating at the beginning
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Figure 3. Codon Order Influences the Speed

of Translation in Yeast Cells

(A) Two different green fluorescent proteins were

synthesized with the same codons but ordered

either to minimize (GFP1) or maximize (GFP2)

isoacceptor tRNA reuse for each amino acid. For

the construct sequences, see Table S2.

(B) Translation of double constructs containing two

GFP proteins (HA-GFP1GFP2, HA-GFP2GFP1,

HA-GFP2GFP2). Nascent chain length varies in

proportion to ribosome position, while nascent

chain density varies inversely proportional to local

translation speed.

(C) Distribution of nascent chains and final

products after a 3 min. labeling pulse for the indi-

cated fusion genes (autoradiogram of PAGE gel).

A construct expressing only 1 GFP fused to HA

(HA-GFP1) shows the size of the first GFP domain

(first lane).

(D) Signal intensity as a function of gel position for

the indicated fusion genes. The faster translating

GFP2 (purple) leads to more product while GFP1

(hatched green) accumulates more intermediary

products 3 min after addition of the label. The first

half of each construct is GFP2 and serves as

a control.

(E) Data for three pairs consisting of one GFP2

(correlated codons) and one GFP1 (anticorrelated

codons). Within pairs, sequences differed only in

codon order. For all three constructs, the corre-

lated were translated faster than the anticorrelated

constructs. For each pair, data are based on at

least 3 repeats (maximum 5). Error bars denote

one standard deviation. See Table S3 for details

on the constructs and tRNA usage.

(F) Pulse chase experiments. Cells were first

labeled with 35S methionine and cysteine. At t = 0

radioactivity was chased within excess of cold

amino acids. Samples were taken at t = 0 (black),

t = 3 min (purple) and t = 12 min (light blue). Nascent

chains were separated by electrophoresis. Signal

intensity along the gel is shown as in (D). Interme-

diary bands were extended into higher molecular

weight products during the chase.
and stop at the end of the open reading frame, this rule applies to

them too: Ribosome density along the transcript inversely

reflects the local rate of translation (Figure 3B). Since each ribo-

some carries a nascent chain, the length of which is directly

related to the position of the ribosome on the transcript, the

abundance of nascent chains at given lengths directly reflects

translation speed at the corresponding positions on the tran-

script. We thus investigated the effect of codon correlation on

the density distribution of nascent chains. Local translation rates

along a sequence might be influenced by codon sequence, the

amino acids to be incorporated, the nascent chain folding

(Kowarik et al., 2002), and by cotranslational binding of interac-

tion partners. To focus on codon effects, we compared the trans-
lation rates of sequences coding for the exact same peptide,

green fluorescent protein (GFP), a protein that does not interact

with cellular factors, and changed only codon distribution.

Two DNA fragments (GFP1 and GFP2) were constructed with

identical nucleotide and codon composition and coding both

for the same GFP protein, but differing in the order of codon

distribution (see Figure 3A, Table S2 and Table S3, and Supple-

mental Information). The overall codon distribution was chosen

to match that of average S. cerevisiae genes. In GFP1, nonisoac-

cepting codons alternated regularly (anticorrelated codons),

forcing a change of the tRNA at each occurrence of the same

amino acid, for all relevant amino acids. Thus, the TPI value of

GFP1 was –1. In contrast, codon distribution in GFP2 minimized
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the number of events in which the ribosome had to change iso-

acceptor tRNAs (correlated codons, TPI of +1).

To compare the speed of translation through these

sequences, the two fragments were fused into a single DNA

string encoding a GFP-GFP fusion protein. The following

combinations were constructed: GFP1-GFP2, GFP2-GFP2,

GFP2-GFP1. A sequence encoding three repeats of the

HA-epitope (3XHA) was added in frame to the 50 end of each

fusion to allow immunoprecipitation of nascent chains using an

anti-HA antibody. Each open reading frame was put under the

control of the galactose-inducible promoter GAL1-10, on

a plasmid. Expression of the fusion gene in yeast was induced

with galactose and the products were labeled with 35S-labeled

methionine. Upon cell lysis, the nascent chains and the final

products were immunoprecipitated using anti-HA antibodies,

and separated according to size by electrophoresis. Autoradio-

grams of the gels were used to quantify and compare the distri-

bution of the nascent chains along the different transcripts.

These experiments established that the pattern of nascent

chain distribution was highly reproducible for a given sequence,

but distinct from one construct to the other (Figure 3C). Thus

nucleotide order indeed affected translation speed. One band

was observed for all constructs, at the size of a single GFP. In

cold chase experiments, the band disappeared, while the full-

length product continued to accumulate (Figure 3F, t = 0 black,

t = 3 min. pink, t = 12 min. light blue). Thus, this band corre-

sponds to a transient pause upon synthesis of the first GFP,

and not to abortive transcription or translation. Strikingly, this

band was always present, also for alternative GFP constructs

(see below). Thus, it was dictated by peptide and not nucleotide

sequence. Potentially, GFP induces the ribosome to pause

while it folds, as is already documented for other peptides

(Kowarik et al., 2002). Otherwise, the patterns of nascent chain

distribution were clearly different when comparing GFP1 and

GFP2 sequences. For example, when the two constructs

started with the same GFP-coding sequence (such as GFP2

in Figures 3C and 3D) but diverged for the second copy of

GFP, differences were not observed in the lower part of the

gel corresponding to the translation of GFP2, but were obvious

in the upper part (GFP1 versus GFP2). In all combinations,

nascent chain density, and hence ribosome density, was high-

est for the region of the transcript corresponding to GFP1 and

lowest for GFP2. Since the only difference between GFP1 and

GFP2 is that codons were anticorrelated in GFP1 and correlated

in GFP2, these data indicate that the correlated sequence was

translated significantly faster than the anticorrelated one.

To assess the generality of this observation, two additional

GFP pairs were constructed (GFP10/GFP20 and GFP100/GFP200;

Table S2). While codon composition was different between

pairs, it was not within pairs, where only the order of the codons

varied. All sequences coded for the same peptide, i.e., GFP.

GFP10 and GFP100 had a TPI of �1, while GFP20 and GFP200

had a TPI of +1. Furthermore, in the GFP100/GFP200 pair, the

number of rare codons was increased by 30% (Table S3). As

above, the effect of codon correlation on relative translation

rates was determined by pulse-labeling. Again, the codon-corre-

lated sequences were always expressed more efficiently than

their anticorrelated variant (Figure 3E). Because in each pair
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both sequences were identical in terms of codon usage, the

effects observed should be only due to codon order. To ascer-

tain this conclusion, we considered whether unfavorable codon

placement could affect the results. This could be the case, for

example, if the frequency of adjacent, nonsynonymous, rare

codons was increased in the slow constructs, or if unfavorable

mRNA secondary structures, such as G-tetraplexes, were intro-

duced. However, careful inspection of the sequences did not

reveal accumulation of such features in the slow sequences.

Thus, the variations in translation speed observed were primarily

explained by codon correlation.

Precise quantification of thirteen distinct experiments carried

out with the three GFP pairs showed that anticorrelated se-

quences were covered on average with 29% more nascent

chains than correlated sequences. Furthermore, this result was

not significantly affected by the increase in rare codon frequency

in the GFP100/GFP200 pair. Thus, autocorrelation of rare codons

also promoted translation speed. Since nascent chain density

inversely relates to ribosome speed, we conclude that on

average fully correlated sequences are expressed 29% faster

than their fully anticorrelated counterparts. Thus, autocorrelation

of isoaccepting codons substantially speeds up translation

in vivo. This is consistent with codon correlation being strongest

in genes under pressure for rapid expression.

tRNA Correlation as a Function of Distance between
Encoded Amino Acids
Next, we investigated whether autocorrelation correlates with

codon proximity. For each amino acid, codon correlation was

determined as a function of the number of intervening, nonsynon-

ymous codons between the paired codons. For example, for

leucine at distance 20, the frequency of each isoacceptor codon

pair was determined for all successive leucines that are 20 amino

acids apart. These frequencies were examined for each amino

acid individually or summed over all amino acids. To simplify

the statistical analysis, frequencies were combined to form seven

bins covering subsequent distance ranges such that the number

of counts in each bin was approximately equal. The percentage

deviation from expected value was then plotted as a function of

intervening distance (Figure 4A, red lines/+ marks).

For the yeast genome, this study revealed that the bias toward

consecutive use of isoaccepting codons slowly decays with

distance. This decay is not observed when the codon distribution

is shuffled within genes (Figure 4A, green dashes/x marks) or

within the genome (Figure 4A, short blue dashes/ marks). The

difference between the natural (red/+) and within-gene shuffled

(green/x) sequences reflects the impact of codon order on corre-

lation, while the difference between the within-genome shuffled

(blue/ ) and within-gene shuffled sequences reflects the impact

of codon bias. Shuffling the codons within the genome shouldgive

an autocorrelation of 0. Deviations from 0 give a visual estimate

of the variance. When all amino acids are considered together,

the effect of codon order is small but present for S. cerevisiae.

At the amino acid level (Figure S1), codon order had a variable

impact, highest for the amino acids with six codons (leucine, argi-

nine, and serine). In all cases where autocorrelation was signifi-

cant, this significance decayed slowly with distance (alanine and

threonine) or not at all (leucine, serine, arginine, and proline).
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Codon Correlation in Other Eukaryotic Genomes
Next, we asked whether codon ordering is also present in other

eukaryotes. Autocorrelation and its decay as a function of

distance were computed for all amino acids for the genomes

of Arabidopsis thaliana (Figure 4B), the filamentous fungus

Ashbya gossypii (Figure 4C), Caenorhabditis elegans (Figure 4D),

Candida glabrata (Figure 4E), Drosophila melanogaster (Fig-

ure 4F), Homo sapiens (Figure 4G), and S. pombe (Figure 4H).

This analysis indicates that codon order has a strong impact

on codon correlation in all organisms, except S. pombe and

that the effect always decays with distance. In contrast, the

effect due to codon bias (correlation upon codon shuffling at

the gene level, green) showed no distance-dependent decay,

as expected. Codon order had the strongest impact on codon

correlation (difference between the red and green curves) in

A. gossypii and A. thaliana. It had a strong impact in all animal

genomes (C. elegans, D. melanogaster, and H. sapiens). In
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A. thaliana, C. elegans, and D. mela-

nogaster, the effect of codon order de-

cayed rapidly, while it decayed slowly

in all other species. Thus, although in

some organisms codon bias is the stron-

gest cause of codon autocorrelation,

codons are ordered beyond this effect

and in a distance-dependent manner in

virtually all genomes investigated.

DISCUSSION

tRNA Recycling Promotes Efficient
Translation
Together, our results establish that

sequences supporting tRNA reusage

are expressed more efficiently than se-

quences that impose tRNA changes.

Five main arguments lead to this conclu-

sion. First, sequences varying in codon

order, but not in codon composition or

in the encoded amino acid sequence,

are translated faster when the codons

are correlated, at least in yeast. Second,

all genomes investigated are biased

toward autocorrelated sequences. Third,

autocorrelation is strongest in highly ex-

pressed genes in yeast, and particularly
in genes that are under pressure for rapid induction. Fourth,

pressure for codon correlation is strongest for rare codons,

especially in highly expressed genes, arguing that codon corre-

lation strongly helps translation. Fifth, codon order decays with

the distance separating two synonymous codons, suggesting

that it reflects a memory-effect taking place during translation.

Based on all these observations, we suggest that codon correla-

tion allows the actual reuse of tRNAs by the ribosome (see

below). In our experiments, the average gain in terms of speed

was an impressive 30%. An average augmentation of 30% in

translation speed is remarkable for a process that has been

optimized by selection since the early days of evolution. Further-

more, a 30% gain in response speed is likely to have an impor-

tant and decisive impact in the context of a competitive environ-

ment and on the time scale of many generations.

Our observation has three main corollaries. First, it provides an

interesting and quantitative approach to evaluate the relative
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contributions of the parsimony and extended wobble mecha-

nisms for codon-tRNA assignments in vivo. Crick hypothesized

that while the first two positions of the codon triplet strictly

observe the base pairing rules, the third position is allowed to

‘wobble’–the 50 end of the anticodon can form hydrogen bonds

with several bases at the 30 end of the codon (Crick, 1966). While

this wobbling is common in prokaryotes, our data suggest that in

eukaryotes the parsimony rule is more relevant.

Observing that eukaryotes have more synonymous tRNAs

than prokaryotes, Percudani introduced the ‘‘parsimony of

wobbling’’ rule for eukaryotes. According to this hypothesis,

codons only wobble when there is no perfect tRNA. The fact

that synonym tRNAs have been retained in evolution is a strong

argument for restricted codon reading and might reflect the need

for higher specificity of decoding. A small amount of correlation

is observed between codons read by the same codon in the

extended wobble rule, arguing that some cross-reading takes

place. However, autocorrelation is much stronger between

codons read by the same tRNA under the parsimony rules.

Thus, our data indicate that the parsimony rule is favored in vivo.

As a second corollary, our findings underline the selection

pressure being exerted on codons. Indeed, our data indicate

that beyond the selection pressure exerted on the nature of the

amino acid being encoded, the codon choice is also under selec-

tion. This selection does not only reflect tRNA availability, but

also the advantage there is in reusing the same tRNA (see

below). Possibly, when the nature of the amino acid is not abso-

lutely crucial, selective pressure might be more on codon choice.

Statistical analysis of coding sequences suggested that codon

distribution contributes to the modulation of translation speed

along a given transcript (Thanaraj and Argos, 1996; Zhang

et al., 2009), perhaps to adapt production speed to folding

kinetics of the product (Kimchi-Sarfaty et al., 2007). It will be

interesting to determine whether breaks in codon correlation

also contribute to this process.

Third, our studies indicate that codon correlation is a predictor

of genes under strong pressure for rapid and efficient translation.

In unicellular organisms, such genes most likely promote stress-

response and cell proliferation. It would be interesting to deter-

mine which classes of genes are under pressure for rapid

expression in multicellular organisms. Interestingly, two classes

of genes do not favor increased correlation: the genes involved in

mating of haploids and in meiosis, in diploids. Mating induced

genes show a neutral TPI, indicating that selection promotes

neither codon autocorrelation nor anticorrelation. Therefore,

there is apparently no selection for responding rapidly to part-

ners. In contrast, codons were anticorrelated in meiotic genes.

Interestingly, meiosis is induced by nitrogen starvation, i.e.,

when translation is limited by amino acid availability rather than

tRNA complexity. Interestingly, theoretical modeling has estab-

lished that codon usage helps to regulate translation during star-

vation. Indeed, frequently used tRNAs are exhausted most

rapidly upon amino acid depletion (Elf et al., 2003; Dittmar

et al., 2005). As a consequence, starvation response genes,

the expression of which needs to be optimal under amino acid

depletion, are enriched in rare codons (Elf et al., 2003). Thus, if

codon autocorrelation leads to tRNA reusage, this process might

speed up elongation when amino acids are abundant (see
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below), and slow it down under low amino acids levels. There-

fore, the negative value of the TPI in meiosis genes is in excellent

agreement with the hypothesis that codon autocorrelation

promotes tRNA recycling. In summary, a systematic analysis of

TPI of individual genes will be highly informative about the condi-

tions of their expression.

Why Is Codon Autocorrelation Beneficial?
Figure 5 presents three scenarios for tRNAs behavior upon

leaving the ribosome. They might diffuse away quickly, relative

to translation speed, and be rapidly mixed with isoacceptors

(Model A, Figure 5A). If so, no selection pressure would fix muta-

tions that promote successive codons to be similar or dissimilar

and codons should not be correlated beyond the correlation

caused by codon bias.

In contrast, if tRNA diffusion is slow relative to both reloading

and translation (Model B), a recently used tRNA would be more

likely than any of its isoacceptors to still be in the vicinity of the

ribosome at the next occurrence of the same amino acid

(Figure 5B). In this case, it becomes advantageous to profit

from its presence and reuse it. Hence, successive occurrences

of isoaccepting codons would be likely to translate faster than

when the ribosome must wait for arrival of another, appropriate

tRNA. The advantage would be strongest for amino acids that

are read by several competing tRNAs (keeping the same tRNA

reduces complexity) and for codons that are close in the gene

sequence (when the ribosome arrives at the second codon, the

tRNA is then more likely to still be around). Thus, autocorrelation

would be predicted to decay steeply at increasing intervals. If

tRNA diffusion is modeled as a random walk in three dimensions,

the probability that the tRNA comes back to the ribosome should

decay with each time step (adjacent amino acids being trans-

lated) t as b = O(t-3/2).

Finally, the tRNAs might remain physically associated with the

ribosome (Model C, Figure 5C). Codon autocorrelation would

enhance translation speed in this model, as in model B, but auto-

correlation would now be predicted to decay much more slowly.

All our data establish that codon order is not neutral and

disprove Model A. Thus, tRNA diffusion away from the ribosome

is slower than translation and acylation. This last point confirms

that tRNA acylation is not limiting translation (Zouridis and Hatzi-

manikatis, 2008). However, why should tRNA diffusion be slower

than translation? The answer might come from comparing

models B and C. Model B predicts that the decay of autocorre-

lation with the distance separating subsequent synonymous

codons is sharp, while Model C predicts it to be slower. The

random diffusion model, a random walk in three dimensions

starting from the first point of the autocorrelation in the real

sequences (red/+) to the average of the within-gene shuffled

sequences (green dashes/x), is shown for each genome (Fig-

ure 4, purple dotted line). For all genomes, autocorrelation

decays more slowly than the diffusion model predicts. Only in the

nematode and fly does the decay approach the diffusion model.

Thus, at least in A. gossypii, C. glabrata, H. sapiens, A. thaliana,

and S. cerevisiae, Model C best explains our data. Thus, our data

suggest that tRNAs are recycled through binding of out-going

tRNAs to the ribosome. This association might be particularly

strong for Leu, Ser, Arg and Pro tRNAs. Furthermore, given the
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The ribosome and tRNA size and shape are adap-

ted from an E. coli crystal structure (Schuwirth

et al., 2005).

(A) Hypothesis A: the tRNAs diffuse rapidly and

can hardly be reused. We expect no significant

codon autocorrelation.

(B) Hypothesis B: the tRNAs diffuse more slowly

than the translation rate but move freely around

the ribosome. If modeled by a random walk in

three dimensions, an exponential decay of the

autocorrelation is expected with time.

(C) Hypothesis C: the tRNAs remain associated

with the ribosome. A slower decay of the autocor-

relation than for Model B is expected.
phylogenetic relationships of fungi, animals and plants, tRNA

recycling may have emerged early in eukaryotic evolution. We

suggest that tRNA recycling contributes to the optimization of

translation speed through local reduction of tRNA complexity

around the ribosome.

Previous studies suggested that upon recharging, the tRNAs

might remain bound with the tRNA-synthetase complex, which

might itself remain associated with the ribosome (Irvin and Hard-

esty, 1972; Petrushenko et al., 2002). The tRNAs may remain

bound to the elongation factor (Gaucher et al., 2000). Similarly,

data from the Deutscher lab indicated that tRNAs might be

channeled to the ribosome (Negrutskii and Deutscher, 1991;

Stapulionis and Deutscher, 1995). Our observations are compat-

ible with such ideas and argue in favor of at least some level of

tRNA channeling taking place at the ribosome.

EXPERIMENTAL PROCEDURES

Yeast and Bacterial Strains and Methods

S35 labeling was carried out in YYB384 (MATa his3D200 ura3-52 trp1-D63 leu2

lys2-801 ade2-101), an S288c derivative. DNA amplification was carried out in

E. coli XL1-Blue (supE44 hsdR17 recA1 endA1 gyrA46 thi relA1 lac). All yeast

and bacterial media and methods are standard (CurrentProtocolsMB).
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Production of the Synthetic Genes

Oligonucleotides of 110 to 125 nucleotides were

designed, such that one served as a template for

amplification by the two others by PCR. The prod-

ucts (around 300 nucleotides) contained 30 nucle-

otides overlapping sequences at their extremities

with each other and the cloning vector to allow

recombination in vivo. Recombination of the frag-

ments generated the GFP coding sequence and

inserted it behind the GAL1-10 promoter in a 2m

plasmid. Positive clones were screened by visual-

ization of GFP fluorescence and confirmed by

Western blotting and sequencing.

Radioactive Labeling

Cells grown overnight at 30�C in SGal-Leu liquid

medium, were inoculated in 100 ml of SGal-Leu-

Met-Cys liquid medium at OD600 = 0.2. After 3 hr

at 30�C (OD600 = 0.5) with constant shaking, 8.0

OD600 cells were collected by centrifugation

(3000 rpm, 2 min). The supernatant was removed

and the cells resuspended in 300 ml of SGal-Leu
and equilibrated at 22�C. At t0, 0.3 mCi 35SMet/Cys-Promix (Amersham-Phar-

macia) were added. After 3 min incubation at 22�C, 50 ml of stopping buffer

(Cycloheximide, 10mg/ml, NaF 1M) were added to stop freeze. The cells

were briefly vortexed, rapidly spun down (13,000 rpm, 5 s), the supernatant

was removed, and the pellet was shock frozen in liquid nitrogen.

Immunoprecipitation and Detection of Nascent Chains

100 ml of ice-cold lysis buffer (IP buffer with 1% SDS, Cycloheximide 0.1 mg/ml,

NaF 10 mM) were added to the frozen pellet. An equal volume of acid-washed

glass beads (Sigma) was used to break the cells by vortexing 4 min at 4�C

(8 3 30 s with 30 s intervals on ice). 900 ml of ice-cold IP buffer (Tris Cl

[pH 8.0] 50 mM, KCl 100 mM, SDS 0.1%, Triton X-100 1.0%, DOC 0.3%,

EDTA 5.0 mM, Yeast protease inhibitor cocktail (Sigma, 1%) and (PMSF

0.1 mM) were added, the cell lysate was mixed, and cleared by centrifugation

for 15 min at 14,000 rpm (4�C). The cleared lysate was pre-incubated with 50 ml

of protein A-Sepharose (50% slurry in PBS) for 1 hr at 4�C to eliminate proteins

binding nonspecifically to the beads. The lysate was then recovered and incu-

bated with 2 mg of anti-HA antibodies (Santa Cruz) overnight at 4�C on a rotating

wheel. Antibody-nascent chains complexes were recovered the next day by

adding 75 ml of protein A-Sepharose beads (50% slurry in PBS) and incubating

for 1 hr at 4�C on a rotating wheel. The beads were recovered by centrifugation

(30 s at 1400 rpm). The supernatant was kept for control. The Sepharose beads

were subsequently washed 4 times with 1 ml of ice-cold IP buffer. The beads

were transferred into a new tube, and the immune complexes were eluted

with 20 ml of 1.53 Laemmli buffer and incubation at 90�C for 5 min. For
67, April 16, 2010 ª2010 Elsevier Inc. 365



separation of the nascent chains, an SDS-PAGE gradient gel 10 to 20% was

prerun for 15 min at 15 mA at 4�C, the slots were rinsed with running buffer,

and loaded with the radio-labeled samples (15 ml). These were separated at

15 mA at 4�C until the migration front exited the gel. The gel was then dried

on a Whatmann paper and exposed on a PhosphoImager plate for 72 hr. For

pulse chase analysis of protein synthesis, the same procedure was applied,

with the following adaptations. After 3 min of labeling, a first sample of 300 ml

was collected, while 100 ml of nonradioactive Met/Cys saturated solution

were added to the remainder of the cells for the chase. Additional samples

(325ml) were collected at t = 6, 9 and 15 min. All samples were subsequently

treated as described above.

Databases

For the computational studies, NCBI release 36 of the S. cerevisiae genome,

NCBI Release 36 of the human genome, WormBase Release 170 of the

C. elegans genome, NCBI release 84 of Ashbya gossypii, Release 81 of

S. pombe, Release 80 of Candida glabrata, the November 2005 release of

Arabidopsis thaliana from NCBI, and FlyBase Release 4.3 of Drosophila

melanogaster were obtained from EMBL (Kulikova et al., 2004). All genome

processing and computational scripts were written using the Darwin software

package (Gonnet et al., 2000).

Autocorrelation of Codon and tRNA Usage

The autocorrelation results in Table 1 and Table S2 were computed as follows.

For each sequence and for each of the nine amino acids with isoaccepting

tRNAs (Ala, Arg, Gly, Iso, Leu, Pro, Ser, Thr, and Val) the number of consecu-

tive pairs of codons were counted. The expected number of consecutive pairs

was computed as the products of the frequencies of the individual codons of

each pair in the database. A Z-transform, subtracting the expected counts

from the observed and dividing by the standard deviation (estimated assuming

a binomial distribution) was performed and the results expressed as standard

deviations from the expected value. The same results were expressed as

percentages by subtracting the expected counts from the observed counts

and dividing by the expected counts.

Correlation of TPI with Gene Expression

To determine how TPI data correlates with expression data, we obtained

groups of genes that are upregulated when subjected to various conditions

from ‘‘Expression Connection,’’ (Ball, 2001) http://db.yeastgenome.org/

cgi-bin/expression/expressionconnection.pl. For each group in Table 2, the

TPI and the average TPI were computed. The average values were compared

to average values from groups of equally many randomly picked genes (105

repetitions), and p values were computed. The CAI values were computed

using the method of Sharp and Li (Sharp and Li, 1987).

Expression data was sorted into fast and slow groups (Table 2B) in the

following manner: the expression connection returns 55 genes that are

upregulated by R 10-fold when exposed to NaAsO2 (Haugen et al., 2004).

Expression levels were available for 0.5, 2 and 4 hr. The intensity ratio 2 hr/

0.5 hr was used to split the genes into fastest third (the third with the largest

indices), middle third, and the slowest third (the third with the smallest indices).

Similarly, the expression data of (Spellman et al., 1998) was analyzed. Time

course data were reported after synchronizing cells at three different parts of

the cell cycle (pheromone arrest in G1, sampled every 7 min. for 140 min.,

centrifugal elutriation in G1, sampled every 30 min. for 6.5 hr, and late in

mitosis, sampled every 10 min. for 300 min.). The ratio of expression from

each time pair t/(t-1) was computed for the 800 genes implicated in the cell

cycle and the highest 3 ratios averaged. The data in Table 2B is for the 10%

of the genes with the highest and lowest of these averages.

SUPPLEMENTAL INFORMATION
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